УДК 630*161+627.8

DOI:10.18324/2077-5415-2020-1-80-84

Расчет неразмывающих скоростей на высоте выступов шероховатости донных отложений

М.М. Кадацкая 1a , А.Ю. Виноградов 1,2b , В.А. Обязов 1c , В.А. Кацадзе 2d , С.А. Угрюмов 2e , Ю.И. Беленький 2f , А.Р. Бирман 2g , С.В. Хвалев 1h , А.В. Кучмин 1i , И.В. Бачериков 2j , Т.В. Коваленко 2k

Статья поступила 02.09.2019, принята 20.09.2019

Правильный расчет русловых деформаций при проектировании подмостных укреплений на участках отверстий водопропускных сооружений является основным условием их долговременной и безотказной эксплуатации. Основным критерием устойчивости проектируемого водопропускного инженерного сооружения лесных дорог является условие непревышения допускаемой в проекте крепления русла неразмывающей скорости. В статье рассматриваются различные подходы к расчету неразмывающих скоростей потока на высоте выступов шероховатости. В качестве примера приведены расчеты размыва донных отложений однородных песков средней крупности 1 мм в предположении воздействия плоского равномерного потока на дно при турбулентном режиме течения. Проведен анализ различных формул неразмывающих придонных скоростей — как предлагаемых в специальной литературе, так и разработанных авторами самостоятельно на основе анализа физики процесса. В итоге сформулированы следующие выводы: рассмотренные в статье зависимости позволяют достаточно легко оценить реальные неразмывающие придонные скорости; отклонение значений придонных неразмывающих скоростей по рассмотренным в статье зависимостям от средних не превышает 20 %.

Ключевые слова: водопропускные сооружения; неразмывающая скорость; турбулентный режим движения жидкости; придонная скорость на уровне вершин выступов шероховатостей.

Calculation of non-eroding velocities at the height of surface asperity of bottom sediment

M.M. Kadatskaya^{1a}, A.Yu. Vinogradov^{1,2b}, V.A. Obyazov^{1c}, V.A. Katsadze^{2d}, S.A. Ugryumov^{2e}, Yu.I. Belenkiy^{2f}, A.R. Birman^{2g}, S.V. Hvalev^{1h}, A.V. Kuchmin¹ⁱ, I.V. Bacherikov^{2j}, T.V. Kovalenko^{2k}

The correct calculation of channel deformations while the designing fortifications under the bridge in the sections of the openings of culverts is the main condition for their long-term and trouble-free operation. The main criterion for the stability of the designed culvert engineering construction of forest roads is the condition for not exceeding the non-eroding velocity allowed for this channel. The article discusses various approaches for calculating non-eroding flow velocities at the height of surface asperity. As an example, calculations of erosion of bottom sediments of homogeneous sand of medium size 1 mm under the assumption of the effect of a flat uniform flow on the bottom under turbulent flow conditions are given. The analysis of various formulas of non-erosion bottom velocities is carried out both those proposed in the specialized literature, and independently developed by the authors based on an analysis of the process phys-

¹ ООО НПО «Гидротехпроект», ул. Октябрьская, 55а, Валдай, Россия

² Санкт-Петербургский государственный лесотехнический университет им. С.М. Кирова, Институтский пер., 5, Санкт-Петербург, Россия

^a mk@npogtp.ru, ^b gd@npogtp.ru, ^c td@npogtp.ru, ^d tlzp@inbox.ru, ^e ugr-s@yandex.ru, ^f tp_mlk@spbftu.ru,

^g birman1947@mail.ru, ^h sh@npogtp.ru, ⁱ ak@npogtp.ru, ^j ivashka512@gmail.com, ^k taras.kovalenko.spb@gmail.com

 $[^]a \ \, \text{https://orcid.org/0000-0002-5979-0970}, \ ^b \ \, \text{https://orcid.org/0000-0001-8838-8676}, \ ^c \ \, \text{https://orcid.org/0000-0002-9644-1286}, \ ^d \ \, \text{https://orcid.org/0000-0002-2997-4947}, \ ^e \ \, \text{https://orcid.org/0000-0002-8077-3542}, \ ^f \ \, \text{https://orcid.org/0000-0002-4170-3664}, \ ^g \ \, \text{https://orcid.org/0000-0002-1693-0515}, \ ^h \ \, \text{https://orcid.org/0000-0002-5324-2498}, \ ^i \ \, \text{https://orcid.org/0000-0002-1693-0513-1604}, \ ^k \ \, \text{https://orcid.org/0000-0003-1366-3332}$

¹ SPA «Hydrotechproject», LLC; 55a, Oktyabr'skaya St., Valdai, Russia

² St. Petersburg State Forest Technical University under name of S.M. Kirov; 5, Institutsky Per., St. Petersburg, Russia

^a mk@npogtp.ru, ^b gd@npogtp.ru, ^c td@npogtp.ru, ^d tlzp@inbox.ru, ^e ugr-s@yandex.ru, ^f tp mlk@spbftu.ru,

^g birman1947@mail.ru, ^h sh@npogtp.ru, ⁱ ak@npogtp.ru, ^j ivashka512@gmail.com, ^k taras.kovalenko.spb@gmail.com

^a https://orcid.org/0000-0002-5979-0970, ^b https://orcid.org/0000-0001-8838-8676, ^chttps://orcid.org/0000-0002-9644-1286, ^d https://orcid.org/0000-0002-2997-4947, ^e https://orcid.org/0000-0002-8077-3542, ^f https://orcid.org/0000-0002-4170-3664, ^g https://orcid.org/0000-0002-1693-0515, ^h https://orcid.org/0000-0002-5324-2498, ⁱ https://orcid.org/0000-0003-2111-6347, ^j https://orcid.org/0000-0002-0531-1604, ^k https://orcid.org/0000-0003-1366-3332 Received 02.09.2019, accepted 20.09.2019

ics. As a result, the following conclusions are formulated: the dependences considered in the article make it fairly easy to estimate the real non-erosion bottom velocities; the deviation of the values of the bottom non-erosion velocities according to the dependences considered in the article on average does not exceed 20 %.

Keywords: culverts; non-eroding velocity; turbulent fluid motion; bottom velocity at the height of surface asperity.

Введение. Анализ причин разрушения подавляющего количества построенных мостовых и трубных переходов лесных дорог позволяет выделить две основные:

- недооценка величины максимального пропускаемого расхода;
 - ошибка в оценке неразмывающих скоростей.

Рассмотрение физического подхода при расчетах неразмывающих скоростей при воздействии потока на дно проектируемого водоотводного или водопропускного сооружения в предлагаемой статье получило дальнейшее развитие [1].

Методика исследования. Далее в данной статье рассматривается размыв донных отложений однородных песков средней крупности 1 мм из предположений воздействия плоского равномерного потока на дно при турбулентном режиме и используются следующие обозначения (табл. 1).

Таблица 1. Принятые обозначения

 $V_{np\partial}$ — осредненная продольная придонная скорость на глубине $y,\ m/c$. За придонную скорость принимаем скорость потока на уровне вершин выступов шероховатости ($y=\Delta$);

 V_{cp} — средняя скорость потока, M/c;

 V_* — динамическая скорость, M/c;

у — ордината по оси, перпендикулярной поверхности дна потока, m;

 Δ — высота выступов шероховатости, *м*;

h — глубина потока, M;

R — гидравлический радиус, M, $R \approx h$;

 Re_* — число Рейнольдса на высоте выступов шероховатости;

au — касательное напряжение, $\frac{\kappa c}{\mathit{M} \cdot \mathit{c}^2}$;

 ρ — плотность жидкости, 1 000 кг/м³;

g — ускорение свободного падения, 9,81 M/c^2 ;

i — гидравлический уклон: $i = \frac{V^2}{C^2 h}$;

— постоянная Кармана, принятая равной 0,27;

l — величина, характеризующая геометрическую структуру турбулентности потока, масштаб турбулентности, m;

С — коэффициент Шези, определяемый по формуле

Н.Н. Павловского: $C = \frac{1}{n} R^{1/6}$, где R — гидравлический

радиус, $R \approx h$;

n — коэффициент шероховатости;

A — коэффициент турбулентной вязкости (турбулентного обмена), $\kappa \epsilon/mc$

Предположим, что толщина пограничного слоя меньше высоты выступов шероховатости и на донные отложения оказывает воздействие турбулентный режим. Попробуем оценить размывающую скорость на уровне вершин выступов шероховатости различными способами.

1. Оценочное значение осредненной скорости на уровне вершин выступов шероховатости [2] приведено в табл. 2.

$$V_{np\partial} = k_1 \cdot V_* \,. \tag{1}$$

Значение коэффициента k_1 находится в пределах $6.5 \div 9.75$. Нижняя граница определена по опытам Ванони; Никурадзе и Зегжда определили $k_1 = 8,5$ [2], верхняя определена путем пересчета высоты выступов шероховатости, принятых в опыте Ванони с учетом замечаний Гришанина [2].

2. Распределение скоростей по глубине потока с использованием зависимости В.Н. Гончарова [3] при изменяющейся, в зависимости от скорости потока, толщине пограничного слоя [2] привело к уточненным результатам скорости потока на границе слоя (табл. 2):

$$V_{np\partial} = V_{cp} \frac{\lg(16.7 \cdot y/\Delta + 1)}{\lg 6.15 \cdot h/\Delta} . \tag{2}$$

Таблица 2. Размывающая скорость на высоте выступов шероховатости по различным подходам

V_{cp} , m/c	0,1	0,5	1	2
V _∗ , м/c	0,004	0,019	0,038	0,077
V_{npo} , (1) $k=7$, 0, M/c	0,028	0,133	0,266	0,539
$V_{np\partial}$, (2) m/c	0,027	0,134	0,268	0,535

3. Пусть мы имеем дело с равномерным установившимся движением, гидравлический радиус равен глубине: R = h, сопротивление движению оказывает дно потока. Поскольку число $Re_* \ge 45$, то:

$$\tau = \rho \cdot V_*^2 \Rightarrow \tau = \rho \cdot g \cdot h \cdot i \,. \tag{3}$$

С другой стороны, величина градиента осредненной скорости определяется величиной касательного напряжения в потоке:

$$\tau = \rho \cdot l^2 \cdot \left(\frac{dV}{dv}\right)^2. \tag{4}$$

Применяя формулу Прандтля [2]:

$$l = \chi \cdot y \,, \tag{5}$$

$$(\chi \cdot y)^2 \cdot \left(\frac{dV}{dy}\right)^2 = g \cdot h \cdot i = g \cdot \left(\frac{V}{C}\right)^2,$$
 (6)

$$(\chi \cdot y)^2 \cdot \left(\frac{dV}{dy}\right)^2 = g \cdot \left(\frac{V}{C}\right)^2, \tag{7}$$

$$C = \frac{1}{n} \cdot h^{1/6} \,, \tag{8}$$

$$\frac{dV}{dy} = \frac{n \cdot V \cdot \sqrt{g}}{h^{1/6} \cdot \chi \cdot y},$$
 (9)

$$\frac{dV}{V} = \frac{n \cdot \sqrt{g} \cdot dy}{h^{1/6} \cdot \gamma \cdot \gamma} , \qquad (10)$$

$$\int \frac{dV}{V} = \int \frac{n\sqrt{g}}{h^{1/6} \gamma} \frac{dy}{y} \,, \tag{11}$$

$$\ln |V| = \frac{n\sqrt{g}}{h^{1/6}\gamma} \ln |y| + \ln |C_1|$$
 (12)

Для нахождения постоянной интегрирования C_1 воспользуемся следующим граничным условием:

$$V(y = 0.4h) = V_{CP}$$
, (13)

$$\ln |V_{cp}| = \frac{n\sqrt{g}}{h^{1/6} \chi} \ln |0.4h| + \ln |C_1|, \qquad (14)$$

$$\ln|C_1| = \ln|V_{Q}| - \frac{n\sqrt{g}}{h^{1/6}\chi} \ln|0,4h| = \ln\left|\frac{V_{Q}}{(0,4h)^{\frac{N\sqrt{g}}{h^{1/4}\chi}}}\right|,$$
 (15)

$$C_1 = \frac{V_{cp}}{(0.4h)^{\frac{N\sqrt{g}}{R^{1/2}}}}.$$
 (16)

Тогда окончательно получаем, что:

$$\ln |V| = \frac{n\sqrt{g}}{h^{1/6}\chi} \ln |y| + \ln \left| \frac{V_{cp}}{(0.4h)^{\frac{n\sqrt{g}}{h^{1/6}\chi}}} \right|, \quad (17)$$

$$V = \frac{V_{cp}}{(0,4h)^{\frac{n\sqrt{g}}{h^{2/4}J}}} y^{\frac{n\sqrt{g}}{h^{2/4}J}} = V_{cp} \left(\frac{y}{0,4h}\right)^{\frac{n\sqrt{g}}{h^{2/4}J}}.$$
 (18)

Результаты расчетов сведены в табл. 3.

Таблица 3. Придонная скорость по зависимости (18)

V_{cp} , m/c	0,1	0,5	1	2
$V_{np\partial}$ (18), M/c	0,032	0,160	0,321	0,642

- 4. Используя прием замены максимальной скорости на вертикали средней скоростью [1] в соотношении распределения дефицита скорости $\frac{V_{\max}-V}{V_*}=5\lg\frac{h}{v}$ и
- [2], получаем следующую зависимость для придонной скорости на высоте выступов шероховатости:

$$V_{npo} = V_{cp} - 5V_* \lg \frac{h}{y} . \tag{19}$$

Таблица 4. Придонная скорость по зависимости (19)

V_{cp} , m/c	0,1	0,5	1	2
$V_{np\partial}$ (19), м/с	0,022	0,132	0,264	0,508

5. Для плоского потока при постоянном касательном напряжении:

$$\frac{A}{Q} = v_T = \chi V_* y \ . \tag{20}$$

Полное напряжение сопротивления движению плоского потока складывается из касательного на дне и турбулентного в теле потока [3]:

$$\tau_{nonh} = \mu \frac{dV_{np\partial}}{dy} + A \frac{dV_{np\partial}}{dy} = (\mu + A) \frac{dV_{np\partial}}{dy} \ . \ (21)$$

На высоте выступов шероховатости при учете только турбулентной составляющей справедливо выражение:

$$\tau = A \frac{dV}{dv},\tag{22}$$

$$\tau = \rho \cdot V_{\star}^2 \Rightarrow \tau = \rho g(h - y)i = \rho g h \left(1 - \frac{y}{h}\right)i$$
, (23)

$$\rho g h \left(1 - \frac{y}{h} \right) i = A \frac{dV}{dy} , \qquad (24)$$

$$A = \rho \chi V_* y = \rho \chi y \sqrt{ghi} , \qquad (25)$$

$$\sqrt{ghi}\left(1 - \frac{y}{h}\right) = \chi y \frac{dV}{dy} , \qquad (26)$$

$$dV = \frac{V_*}{\chi} \left(\frac{1}{y} - \frac{1}{h} \right) dy , \qquad (27)$$

$$V_* = k_2 V \,. \tag{28}$$

$$\frac{dV}{k_2V} = \frac{1}{\chi} \left(\frac{1}{y} - \frac{1}{h} \right) dy. \tag{29}$$

Граничное условие $V(y=0.4h)=V_{cy}$:

$$V = C_1 y^{k_2/\chi} \exp\left(-\frac{k_2}{\chi} \frac{y}{h}\right),\tag{30}$$

$$C_1 = V_{cy}(0,4h)^{-k/y} \exp(0,4k_2/\chi),$$
 (31)

$$V = V_{cp} \left(\frac{y}{0.4h} \right)^{\frac{k_2}{\chi}} \exp \left(\frac{k_2}{\chi} \left(0.4 - \frac{y}{h} \right) \right). \tag{32}$$

Таблица 5. Придонная скорость по зависимости (32) $k_2 = 0.039$

V_{cp} , м/с	0,1	0,5	1,0	2,0
$V_{np\partial}$ (32), m/c	0,034	0,169	0,338	0,676

6. Следующий вариант расчета придонной скорости на высоте выступов шероховатости.

Исходя из:

$$\tau_{nonh} = (\mu + A) \frac{dV}{dv}, \qquad (33)$$

$$\tau_{nonn} = (\mu + k_3 V) \frac{dV}{dy}, \qquad (34)$$

$$\tau_{non} dy = (\mu + k_3 V) dV, \qquad (35)$$

$$\tau_{nonh} y = (\mu + k_3 V^2 / 2) + C_1 \tag{36}$$

и граничных условий $V_{np,\delta}(y=0)=0$:

$$C_1 = -\mu \tag{37}$$

получаем величину придонной скорости на границе выступов шероховатости с учетом турбулентной вязкости:

$$V_{npo} = \sqrt{\frac{2\tau_{nonn}y}{k_3}} \ . \tag{38}$$

Результаты расчетов приведены в табл. 6, результаты расчетов по всем рассмотренным формулам — в табл. 7. Помимо расчетных значений в табл. 7 приведены средние придонные скорости по формулам (1), (2), (18), (19), (32), (38) для каждой средней скорости

потока, а также отклонения конкретных значений от средних в процентах. Последний столбец табл. 7 характеризует средний процент отклонения расчетных значений по каждой формуле.

Таблица 6. Придонная скорость по зависимости (38) $k_3 = 0.0071$

V_{cp} , m/c	0,1	0,5	1	2
A , кг/м $^{\cdot}$ с	0,001	0,004	0,007	0,014
$V_{np\partial}$ (39), M/c	0,035	0,175	0,350	0,701

Таблица 7. Сводная таблица результатов расчетов придонных неразмывающих скоростей на высоте выступов шероховатости

$V_{cp}, {\it M/c}$	0,1	0,5	1,0	2,0	Среднее значение отклонений, %
$y = \Delta$, M	0,00067	0,00067	0,00067	0,00067	_
$V_{np\partial}$ (1), M/c	0,028	0,133	0,266	0,539	_
Отклонение от среднего, %	6,7	11,9	11,6	10,2	10,1
$V_{np\partial}$ (2), m/c	0,027	0,134	0,268	0,535	-
Отклонение от среднего, %	10,0	11,3	11,0	10,8	10,8
$V_{np\partial}$ (3), M/c	0,032	0,160	0,321	0,642	_
Отклонение от среднего, %	6,7	6,0	6,6	7,0	6,6
$V_{np\partial}$ (4), M/c	0,022	0,132	0,264	0,508	_
Отклонение от среднего, %	26,7	12,6	12,3	15,3	16,7
$V_{np\partial}$ (5), M/c	0,034	0,169	0,338	0,676	_
Отклонение от среднего, %	13,3	11,9	12,3	12,7	12,6
$V_{np\partial}$ (6), M/c	0,035	0,175	0,350	0,701	-
Отклонение от среднего, %	16,7	15,9	16,3	16,8	16,4
V_{npo} , среднее по (1), (2), (18), (19), (32), (39), M/C	0,030	0,151	0,301	0,600	_

Выводы.

- 1. Неразмывающая придонная скорость по таблицам и номограммам руководящих документов [4–12]: 0,12–0,2; по расчетам [13; 14] 0,17–0,24. Наши результаты показывают, что при средней скорости потока 0,5 м/с неразмывающая придонная скорость составляет в среднем 0,15 м/с, разброс от 0,132 до 0,175. Следовательно, рассмотренные в статье зависимости адекватны и позволяют оценить реальные неразмывающие придонные скорости.
- 2. Средняя по вертикали неразмывающая скорость на основании анализа полученных по различным зави-

Литература

- 1. Расчет неразмывающих скоростей на высоте верхней границы пограничного слоя / Виноградов А.Ю., Кадацкая М.М., Бирман А.Р., Виноградова Т.А., Обязов В.А., Кацадзе В.А., Угрюмов С.А., Бачериков И.В., Коваленко Т.В., Хвалев С.В., Парфенов Е.А. // Resources and Technology. 2019. № 3 (16). Р. 44–61. DOI: 10.15393/ j2. art.2019.4782
- 2. Гришанин К.В. Динамика русловых потоков. Л.: Гидрометеоиздат, 1969. 428 с.
- 3. Барышников Н.Б., Попов И.В. Динамика русловых потоков и русловые процессы. Л.: Гидрометеоиздат, 1988. 454 с.

- симостям расчетных придонных значений скорости [4; 5; 12] для приведенных условий лежит в диапазоне 0,5–0,9 м/с, что соответствует табличным значениям [6–11].
- 3. Отклонение значений придонных неразмывающих скоростей по рассмотренным в статье зависимостям от средних не превышает 16,7 % и лишь по формуле (19) для малых средних скоростей потока отклонение от среднего составило 26,7 %. Наиболее полно характеризует усредненные значения придонных неразмывающих скоростей формула (18) отклонение от средних не превышает 7 %.
- ВТР-П-25-80. Руководство по определению допускаемых неразмывающих скоростей водного потока для различных грунтов при расчете каналов. М., 1981.
- СО 34.21.204-2005. Рекомендации по прогнозу трансформации русла в нижних бъефах гидроузлов. СПб.: ОАО «ВНИИГ им. Б.Е. Веденеева», 2006. 104 с.
- 6. Островидов А.М., Кузнецов И.А. Таблицы для проектирования мостов. М.: Автотрансиздат, 1959. 536 с.
- 7. Мосты и трубы по изысканиям и проектированию железнодорожных и автодорожных мостовых переходов через водотоки (ПМП-91): пособие к СНиП 2.05.03-84.М., 1992. 172 с.

- Пособие по гидравлическим расчетам малых водопропускных сооружений / под общ. ред. Г.Я. Волченкова. М.: Транспорт, 1992. 409 с.
- 9. Справочник по гидротехнике / Водгео. М.: Гос. изд-во лит. по строительству и архитектуре, 1955. 858 с.
- 10. Методические рекомендации по расчету местного размыва у опор мостов, 2-е изд. М.: Союздорнии, 1988. 39 с.
- 11. СП 32-102-95. Сооружение мостовых переходов и подтопляемых насыпей. Методы расчета местных размывов. М.: Трансстрой, 1996. 79 с.
- 12. Пуркин В.Й., Холин А.С. Проектирование мостовых переходов. М.: МАДИ, 2014. 44 с.
- 13. Штеренлихт Д.В. Гидравлика: в 2 кн. М.: Энергоатомиздат, 1991. Кн. 2. 367 с.
- Юфин А.П. Гидромеханизация. М.: Стройиздат, 1974.
 223 с.

References

- Calculation of non-eroding water flow velocities at the height of the upper boundary layer / Vinogradov A.YU., Kadackaya M.M., Birman A.R., Vinogradova T.A., Obyazov V.A., Kacadze V.A., Ugryumov S.A., Bacherikov I.V., Kovalenko T.V., Hvalev S.V., Parfenov E.A. // Resources and Technology. 2019. № 3 (16). P. 44–61. DOI: 10.15393/j2.art. 2019. 4782.
- Grishanin K.V. The dynamics of channel flows. L.: Gidrometeoizdat, 1969. 428 p.
- Baryshnikov N.B., Popov I.V. The dynamics of channel flows and channel processes. L.: Gidrometeoizdat, 1988. 454 p.

- VTR-P-25-80. Guidance on the determination of permissible non-eroding water flow velocity for various soils when calculating canals. M., 1981.
- SO 34.21.204-2005. Recommendations for predicting the transformation of the channel in the downstream of hydroelectric facilities. SPb.: OAO «VNIIG im. B.E. Vedeneeva», 2006. 104 p.
- Ostrovidov A.M., Kuznecov I.A. Tables for the design of bridges. M.: Avtotransizdat, 1959. 536 p.
- 7. Bridges and pipes for surveying and designing railway and road bridge crossings through waterways (PMP-91): posobie k SNiP 2.05.03-84.M., 1992. 172 p.
- Manual for hydraulic calculations of small culverts, under total / pod obshch. red. G.YA. Volchenkova. M.: Transport, 1992. 409 p.
- 9. Handbook of hydraulic engineering / Vodgeo. M.: Gos. izdvo lit. po stroitel'stvu i arhitekture, 1955. 858 p.
- 10. Guidelines for the calculation of local erosion at bridge supports, 2-e izd. M.: Soyuzdornii, 1988. 39 p.
- SP 32-102-95. Constructions of bridge crossings and flooded embankments. Methods for calculating local washouts. M.: Transstroj, 1996. 79 p.
- Purkin V.I., Holin A.S. Design of bridge crossings. Tutorial. M.: MADI, 2014. 44 p.
- 13. SHterenliht D.V. Hydraulics: v 2 kn. M.: Energoatomizdat, 1991. Kn. 2. 367 p.
- 14. YUfin A.P. Hydromechanization. M.: Strojizdat, 1974. 223 p.