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The paper provides a justification for the approach to determining the pressure distribution function on the contact surface when a 

spherical indenter is introduced into an elastic-plastic half-space. It is shown that the use of the Hertz theory to describe the process of 
unloading a spherical indenter is an approximate approach, since the contact of two bodies initially in contact at a point is reduced to the 

contact of two second-order paraboloids. This leads to the implicit assumption that a “Hertzian” pressure distribution takes place before 
unloading. A conceptual model of the process of kinetic indentation of a sphere is proposed, according to which, in the process of loading 
a sphere, as a result of elastic and plastic deformation processes, a pressure distribution is formed in the contact between the sphere and 
the material, which is determined by the equation of the loading curve. When the sphere is unloaded, the magnitude of the displacements 
of the restored surface is equal to the displacements of the restored elastic half-space after the action of the desired pressure distribution 
on it. Under repeated loading of the sphere, the displacements of the restored surface will be equivalent to the displacements of the elastic 
half-space under the action of the desired pressure distribution on it. Equations are obtained for the distribution of contact pressure when 
the sphere is introduced into an elastic-plastic half-space. 

 
Keywords: spherical indenter, elastic-plastic half-space, contact pressure distribution, loading curve, unloading curve. 

 

1. Introduction 

 Historically, sphere indentation testing of materials at 
the beginning of the last century was used to determine 

their hardness [1, 2]. Obviously, the appearance of these 

works was influenced by the concept of absolute hardness 

of G. Hertz, who in 1881 solved the problem of elastic con-

tact between a ball and a plane. Since the middle of the last 

century, studies began to appear on the determination of the 

elastic modulus and other mechanical properties [3–9], 

which led to the emergence of the kinetic indentation 

method. The method for determining the modulus of elas-

ticity is based on the Bulychev – Alekhine – Shorshorov 

(BASh) equation  for the stiffness of the initial part of the 

unloading curve, which has the form 
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where A  is the projection of the contact area of the indenter 

with the material, E  is the reduced modulus of elasticity; 
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 , i , and E , iE , are Poisson's ratios and elastic moduli 

of the material and indenter. 

A detailed analysis of the elastic indentation of ax-
isymmetric indenters is presented by the authors of [10]. 

For practical purposes, the stiffness of the initial part of 

the unloading curve is represented by the expression 

aES  2 ,   (3) 

where a  is the radius of the contact area. 

However, as noted in our recent work [11], due to a cer-

tain dissatisfaction in determining the modulus of elasticity 

and the radius of the contact area, various corrective and 

correction factors and parameters are introduced into Eq. 
(3) [12-18], for example, in [12] 

aES c
 2 ,   (4) 

where c  is the correction factor. 

As a result of the research, for the rigidity of the initial 

part of the unloading curve, the authors of [11] proposed 

the following expression 

aE
K

S 




 ,   (5) 

where   is the exponent of the unloading curve 

 
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 ,          (6) 

Raa  , R  is the radius of the spherical indenter, for 

small values the value 5.1 ; 
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     1,112 12    
 KK ,         (7) 

 21,xx  is the beta function:
 

 1 ,  is the expo-

nent in the load curve equation 

   hChP l .   (8) 

In its physical essence, the parameter   is the expo-

nential in the equation of pressure distribution  rp  on 

the contact surface in the loaded state of the indenter dur-

ing its elastoplastic penetration 

   )1( 22
0 arprp ,          (9) 

 

where 1 ,  10  mpp , )( 2aPpm   is the av-

erage pressure in the contact. 

For the Hertzian contact pressure distribution: 5.0

, 4/3K , aES  2 ; for the uniform pressure: 0 , 

2K , aEaES   3562.2)4/3( . 

It should be noted that Eq. (5) for the stiffness of the 

initial part of the unloading curve was previously obtained 

in [19] as a result of determining the corrective factor for Eq. 

(4). 

The purpose of this work is a more detailed substantia-

tion of the approach to determining the pressure distribu-

tion function on the contact surface during the introduction 

of a spherical indenter, since in [11] to explain this issue, 

the authors limited themselves to referring to earlier studies 

of the team. 

Thus, the present work is an addition to the research [11]. 

 

2. Methodological aspects 

The Hertz elastic contact theory is widely used in the 

technical literature to describe the process of indenter un-

loading and reloading. As an example, we can cite well-

known monographs on the mechanics of contact interaction 

[20-22], monographs on the diagnosis of mechanical prop-

erties of materials [23, 24], the work of researchers at the 

National Research University “MEI" [25, 26], Chinese re-

searchers [27, 28]. For all the above publications, the use 

of the "Hertzian" contact pressure distribution (Eq. (9) at 

5.0 ) is characteristic. This result can be explained as 

follows. The Hertz 's theory assumes the following assump-

tions: 1) the surfaces of the bodies are smooth and incon-

sistent (by definition [20]; 2) the characteristic size of the 

contact area a << R, where R is the relative radius of cur-

vature; 3) deformations are small; 4) each of the contacting 

bodies is considered as an elastic half-space; 5) there is no 

friction. 

The contact of two elastic bodies initially touching at a 

point is considered in detail in [29, p. 74]. First, a system 

of Cartesian coordinates is introduced, associated with a 

common tangent plane to the surfaces of elastic bodies at 

the point of their contact. After the expansion of the func-

tions describing the contacting surfaces, according to the 

Maclaurin formula and neglecting the terms of a higher or-

der of smallness, we obtain the contact of their second-or-

der paraboloids, since the expansion begins with quadratic 

terms. 

Thus, the application of the Hertz theory to the elastic 

contact during repeated loading of the indenter is reduced 

to the contact of two second-order paraboloids with relative 

curvature 

0

111

RRR



,    (10) 

where R  is the radius of the spherical indenter, 1
0
R  is the 

curvature of the reconstructed hole, usually determined 

from the radius and depth of the residual hole. 

 For such a contact, the pressure distribution is de-

scribed by Eq. (9) at 5.0 , from which the normal dis-

placements are found [20], and then the radius of the con-

tact area 






E

Rp
a

2

0 ,                   (11) 

and the mutual rapprochement of two bodies 




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E

ap

2

0 .         (12) 

Full compressive load 

2
0

3

2
apP  .        (13) 

To solve the practical problems, it is convenient to set 

a full load and determine the parameters a,   and 0p  by 

the Hertz equations for second-order paraboloids obtained 

from (11) - (13). 

Regarding the use of the Hertz theory to describe the 

unloading process in [20, p. 210], it is indicated that this 

approach is approximate, since it was implicitly assumed 

that a "Hertz" pressure distribution takes place before un-

loading, and the reconstructed profile is therefore a circular 

arc. In fact, the pressure distribution is more uniform than 

the "Hertz" distribution. 

A similar result was obtained by the authors [30, p. 69], 

who point to their verification of the assumption in [3] that 

the nature of pressure distribution at the print site does not 

depend on the properties of the material and the degree of 

deformation in the print. The results of the experiment 

showed that this assumption in determining the modulus of 

elasticity can change its true value by 10 ... 20 %. The real 

distribution of pressure is between the uniform distribution 

and the distribution over the hemisphere, realized with the 

elastic indentation of the ball. 

It is also shown in [30, p. 15] that the radius of curvature 

on the surface of the reconstructed well c can differ almost 

twice, and in the center and on the periphery of the well the 

radius of curvature is greater than between them. This re-

futes the hypothesis that the reconstructed profile is an arc 

of a circle and reduces the reliability of the results when 

using the Hertz theory to describe the unloading process, 

which is typical for the above works [25, 26]. Moreover, 

when determining the modulus of elasticity in these works, 

a single indenter insertion with fixation of the applied 

force, the maximum depth of insertion and the depth of the 

restored well is sufficient. In [25], the data of 
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the loading curve equation are given, but they are not used 

in determining the modulus of elasticity. 

The Sneddon analysis was used in studies [27, 28] [5]. 

The introduction of a spherical indenter into a spherical 

well is described by the equation 












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
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
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h

0

0loglog
2

.               (14) 

Decomposing expression (14) into a Taylor series and 

discarding the terms of the higher order of smallness, as in 

[29], we obtain the expression for the contact of two sec-

ond-order paraboloids with an equivalent radius (10) and a 

reduced modulus of elasticity 



 
hR

S
E

2
.   (15) 

Here, the depth of indenter insertion and the stiffness of the 

initial part of the unloading curve are determined from the 

kinetic indentation diagram. The modulus of elasticity of 

the material is found from Eq. (2). 

The equalization of the pressure distribution on the con-

tact surface during the elastic-plastic insertion of indenters 

is indicated in [12] when presenting the concept of the "ef-

fective form of the indenter" for conical and pyramidal in-

dentors, although the authors use the Hertz theory to deter-

mine the rigidity of the unloading curve. The authors argue 

that from a fundamental point of view, the shape of an ef-

fective indenter can be estimated by making simple as-

sumptions about the distribution of pressure under the in-

denter. The pressure arising during loading is determined 

by complex processes of elastic and plastic deformation, 

which, as a rule, cannot be analyzed in a closed form. How-

ever, during unloading, the pressure decreases only due to 

elastic processes, and the shape of the print changes, form-

ing a curved surface. Under repeated loading, this pressure 

distribution should be restored only by elastic processes. 

Thus, the pressure distribution at maximum load serves to 

link elastic-plastic processes during initial loading with 

elastic processes during unloading and overloading. In this 

context, the shape of an effective indenter should be such 

that it provides the same pressure distribution due to elastic 

deformation of a flat elastic half-space. To implement these 

ideas, it is necessary to know the actual distribution of pres-

sure. Finite element modeling of the indentation of a coni-

cal indenter into elastic-plastic materials has shown that, in 

the first approximation, the pressure is evenly distributed. 

This is because plasticity tends to reduce the influence of 

the elastic feature at the tip of the cone and distribute the 

pressure more evenly. 

Obviously, the above statement is also suitable for the in-

troduction of spherical indenters. Taking into account the as-

sumptions of the authors [20, 30] about the real pressure dis-

tribution between the uniform and the “Hertz", we will look 

for the real pressure distribution in the form (9), where 

5.0...0 . 

In classical monographs on the contact  mechanics  and 

the theory of elasticity [20, 31, etc.], only special cases of 

the stress-strain state for a uniform pressure distribution 

(β=0) and for the “Hertz” pressure (β=0.5.) are considered. 

For analytical expressions for engineering calculations of 

the stress-strain state under the action of a load of the form 

(9) on the half-space, the authors [32]. The reliability of the 

general solutions given in [32] for describing the stress-

strain state is evidenced by their coincidence with the par-

ticular solutions obtained in [20, 31], as well as their use in 

describing the contact geometry in [33] with subsequent 

comparison with the results of finite element modeling. 

In connection with the above, the following conceptual 

model of the process of instrumental indentation of a rigid 

sphere is proposed. During loading of the indenter, as a re-

sult of complex processes of elastic and plastic defor-

mations in contact of the indenter with the material, a pres-

sure distribution is formed, which is determined by Eq. (8) 

of the loading curve. When unloading the indenter, the 

magnitude of the vertical and horizontal displacements of 

the surface being restored is equal to the vertical and hori-

zontal displacements of the elastic half-space being re-

stored after the desired pressure distribution acts on it [34]. 

When the indenter is reloaded, the displacements of the re-

stored surface will be equivalent to the corresponding dis-

placements of the elastic half-space under the action of the 

desired pressure distribution on it. 

 

3. Determination of the pressure distribution on the 

contact surface 

The problem of determining the contact pressure distri-

bution function was first posed in [35], where the indenta-

tion of a rigid ball into an elastoplastic half-space is con-

sidered. In this case, the method of experimental theoretical 

equilibrium developed by the author is used. One of the 

shortcomings of the work is that it did not take into account 

the “pile-up/sink-in” effects (Fig. 1) associated with the 

plastic extrusion of the material of the half-space around 

the sphere (heap formation) and the elastic punching of the 

half-space. 


Fig.1. The effects of "pile-up/sink-in" when indentation the 

sphere 

 

Let's consider this question in more detail. Using the 

technique [35], we consider that the indentation diagram 

is determined experimentally and is given by the power 

function (8). 

The equation of  forces balance  

 

a

rdrrpP

0

2 ,  (16) 

where  rp  is the contact pressure distribution function. 

The radius of the contact area for a spherical indenter 

is determined by the equation 

22 cc hRha  ,  (17) 
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where ch  is the depth at which the sphere contacts the 

material of the half-space. Consider first the case when 

chR  . As a result, we obtain the contact radius for the 

second-order paraboloid 

cRha 2 .   (18) 

In [35] Rha 2 . 

For the function of a contact displacement 

 
R

r
hc

R

r
h

R

ra
ru p

c
222

2222




 . (19) 

where 
0hhc c

p   . When 12 c  there is a “sink-in” ef-

fect, when 12 c  there is a “pile-up” effect. 

Differentiating Eq. (19) with respect to r , we have 

R

r

dr

du
 , Rdurdr  .      (20) 

The equation of forces balance, expressed through the 
function of contact displacements, has the form: 

 
0

0

2
u

duupRP .          (21) 

where   hchuu p

c  00 . 

We will seek the pressure function in the form of a 
power function 

   uup ,         (22) 

where  ,   are two parameters of the desired pressure 

function. 
Substituting (22) into (21), taking into account (8), we 

have 

1

)(
2

1





 hc

RhC
p

l .  (23) 

The resulting equation can be satisfied under the con-
dition 

1 ,  1 ;       (24) 

 
 









)(2)(2

1
1 p

l

p

l

cR

C

cR

C
.       (25) 

Substituting (24) and (25) into (22) we get 

  1

)(2






 u

cR

C
up

p

l ,  (26) 

and taking into account (19) 

   )1( 22
0 arprp ,  (27) 

where 

   
 


















1
1

2

1

2 20 mp

l

p

l p
a

P

hRc

hC

Rc

hC
p .  (28) 

mp is the mean pressure at the contact area. 

Since it is in the range from 1 to 1.5, then 500 ,... . 

Eqs. (27) and (28) were obtained for a parabolic in-
denter, for which the radius of the contact area is deter-
mined by the equation (18), or in the dimensionless form 

cpp hRaa 2 ,      (29) 

where Rhh cc   

Similarly, from Eq. (17) for a spherical indenter, we 
have 

412122 22

ppccccs aahhhha 




  . (30) 

If we use the solution (28) for a spherical indenter, 
then it should be taken into account that in order to ensure 
the forces balance, the mean pressure at the contact area 
must be equal to 

 41 2

p

p

m

s

m app  .        (31) 

Further, two extreme variants of contact pressure dis-
tribution models are possible: 

a) the maximum pressure in the contact varies simi-
larly to Eq. (31) 

 41 2

00 p

ps app  ,      (32) 

then 

1 ps
;            (33) 

b) maximum contact pressure 
ps pp 00  , then 

    414111 22

ppps aa  .        (34) 

The first model of contact pressure distribution is sim-

pler and more convenient to use, the second model equal-

izes the pressure even more, and as the value increases, a 

negative value is possible. Additional studies are needed 

to refine the model. 

 

4. Conclusion 

1. It is shown that the use of the Hertz theory to describe 

the process of unloading a spherical indenter is an approx-

imate approach, since according to the Hertz theory the 

contact of two bodies initially in contact at a point is re-

duced to the contact of two paraboloids of the second order. 

Hence the implicit assumption that a “Hertzian” distribu-

tion of pressures takes place before unloading and that the 

reconstructed profile is an arc of a circle. 

2. The Sneddon's analysis [5] for the contact of two 

spherical bodies leads to the same result (contact of two 

paraboloids of the second order). 

3. A conceptual model of the process of instrumental 

indentation of a rigid sphere is proposed, according to 

which, during the loading of the sphere, as a result of com-

plex processes of elastic and plastic deformations in contact 

of the sphere with the material, a pressure distribution is 

formed, which is determined by the equation of the loading 

curve. When unloading the sphere, the magnitude of the 

displacements of the surface being restored is equal to the 

displacements of the elastic half-space being restored after 

the desired pressure distribution acts on it. Under repeated 

loading of the sphere, the displacements of the restored sur-

face will be equivalent to the corresponding displacements 

of the elastic half-space under the action of a desired pres-

sure distribution on it. 

4. Using the method of experimental theoretical equi-

librium [35], Eqs. (27) and (28) for the distribution of con-

tact pressure when the sphere is embedded in an elastic-

plastic half-space are obtained. 
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