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We further develop the elements of a qualitative theory of structural identification of linear dynamic systems 

through an analytical solution of the abstract realization problem (in the sense of Erugin-Kalman-Mesarovic) in 
a class of strong differential (A,B)-models. The theoretical apparatus is constructed on the basis of introducing a 
special operator whose structure constitutes a modification to the canonical Rayleigh-Ritz ratio. 
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1. INTRODUCTION 
 

This paper is a continuation of the study initiated 
by these authors in a series of articles (Daneev, 
1994a,b), and is ideologically related to publications 
(Daneev, 1995, 1997, 1999a-c, 2000; Erugin, 1952; 
Lakeyev, 1998; Rusanov, 1999; Van der Schaft, 
1987; Vassilyev, 1996; Willems, 1979). The phrase 
"Analytical approach..." that appears in the title 
emerged in the cited references for some fundamental 
reasons. One implies that the whole of the conceptual 
construction below is made in an abstract (theoreti-
cal-system) presentation. The other reason is due to 
the fact that the theoretical-model approach suggested 
below "differentiates" the problem of structural iden-
tification into five research areas which axe put in 
order (between them) by a deductive process of "de-
cision making". The areas themselves, in accordance 
with the indicated order, may be terminologically 
designated as: 1 - "analysis of types", 2 - "synthesis of 
types", 3 - "analysis of representations", 4 - "synthe-
sis of representations", and 5 - "construction". These 
terms are treated (and used in follows) as implying 
the following:  

- "analysis of types" must establish, in terms of 
mathematical definitions of key criteria universes, the 
type 1 of structure, and (in this paper, according to 
standard "discrete-continuous" and "linear-nonlinear" 
dichotomies) by an immanent dynamic system that 
"services" the observations imposed (a posteriori 
information) in the form of "trajectory, control" pairs 
(see Theorem 1 below); 

- "synthesis of types" should identify the condi-
tions of the previously established type of structure of 
the modeled dynamic object when a posteriori 
information is expanded (Theorem 2); 

- "analysis of representations" serves to determine 
the kind2 of structure, or, more precisely, its an-
alytical representation, in the position when its type is 
known (identified); 

- "synthesis of representations" is intended to de-
scribe the invariance of the type of structure iden-
tified with respect to the expansion of a posteriori 
information; 

- "construction" implies manipulation (ideally, 
optimization) of numerical values of free model 
parameters within the framework of the structure 
which is fixed as a result of solving the four pre-
ceding problems. 

It is reasonable to expect that the elements (and 
primarily "hypostasizing") of deductive theoretical-
model analysis, as suggested in this paper, will permit 
us to develop an elegant, adequate structural theory 
encompassing the above- mentioned five areas. 

 
2. KEY CONCEPTS 

 
Structural considerations play a crucial role in 

both the analysis and synthesis of systems of quite 
different types (Ginsberg, 1998; Vassilyev, 1996). 
Therefore, the starting point for our investigation will 
be the concept of the dynamic system (D-system) that 
is formalized in theoretical- multivariate terms (see 
Definition 1 below). At this level, axiomatization of 
the behaviour of the D-system is postulated in terms 
of the theory of sets as a ratio (Defintion 1).  

___________ 

1 In N.Bourbaki's interpretation the type of struc-
ture (the terminology used in this paper) is fitted by 
its genus (Bourbaki, 1965). 

2 The term "kind of structure" must be formally 
perceived as a narrowing of the type of structure to a 
fixed class of mathematical models with a finite iden-
tification dimensional representation (Daneev, 
1994a). 

Furthermore, although many of the concepts of 
structural identification may be defined on the basis 
of nothing but theoretical-multivariate constructions 
of a D-system and a formal identification process 
(Definition 2 (Daneev, 1994a)), it becomes possible 
to obtain substantive mathematical results only by 
introducing additional structures. In this context, the 
approach used later in the text to construct the ele-
ments of general theory of structural identification of 
D-systems is epistemologically as follows: 

- the basic concepts of structural identification are 
introduced through a formalization (i.e. based on a 
verbal description of some intuitive representation, an 
accurate mathematical definition of this concept is 

* - автор, с которым следует вести переписку. 
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given using, for this purpose, a minimum 
mathematical structure allowing for its correct 
interpretation) 3; and 

- then on the basis of the basic concepts obtained 
as a result of formalization, a consistent advance of 
the theory is accomplished by adding new math-
ematical structures needed to investigate the various 
identificability properties of the structure of the D-
system (such a procedure makes it possible to 
elucidate how actually fundamental some concrete 
structural property is, as well as what minimum set of 
assumptions is needed for the identification process 
to reveal this property or, for a given relationship, to 
be satisfied for it). 

After this attempt to give an account of the mo-
tivations for this study, we now present the defi-
nitions of the basic mathematical constructions of D-
systems; the term structure will be understood 
throughout this paper in the sense of Bourbaki, and 
the representation (∆, S∆) - will imply that the set ∆ is 
endowed with the structure S∆.  

Definition 1 (Willems, 1979). The D-system is 
said to be an ordered set of three pairs Σ = 
{(Т,Sт),(W,SW),(Ω,SΩ)},  in which T is a (abstract) set 
of times, W is the alphabet of signals, and Ω is the 
behaviour of the D-system Σ (family of its trajectories 
ω: T→W), and the fixed procession (Sт, SW, SΩ) is 
said to be the structure of the D-system Σ. 

 
_______ 
3 Thus, for example, in spite of the wide diversity 

of structures of mathemnatical analysis, it turns out 
that they are created of the simplest structures of the 
following types: order-type (reflecting the compari-
son), topological (giving the notion of proximity), 
and algebraic (determining the combination of the 
addition and multiplication operations). 

 
Below, with reference to the structure Sт, we shall 

confine our consideration to a linear ordering of the 
set T by the quotient < (Mesarovic, 1975). With such 
a setting, any pair (T*,T

*) of subsets of the set T, that 
T*  ∪T *  =  T, T*  ≠  0 ≠   T *  and from t *  ∈ T*, t *  ∈ 
T*  it follows that t * <  t * , is called (Engelking, 1985) 
the section of the set T. Furthermore, it is implied that 
(T* ,T

*) is a jump if (∃ sup Т* ∈ T*) ( (( inf T* ( T* and 
(T*,T*) is a gap if (((( sup T* ( Т*) ( (( inf T* ( T*)) 
(Engelking, 1985). 

Definition 2. The D-system {(T, Sт), 
(W,Sw), (Ω,SΩ)}  is of discrete type if the structure Sт 
is such that any section in T is a jump and, accord-
ingly, of continuous type if none of the sections of the 
set T is a jump or a gap.  

Let W be the Abelian group with addition as a 
group operation ⊕ and let R be a certain field. As-
sume further that the mapping ⊗ is specified: ⊗: R × 
W → W, such that the set of four (W, ⊕,R,⊗) is the 
vector space over the field R (representation of the 
structure Sw).   

Definition 3 (Mesarovic, 1975). The D-system 
{ ( T ,  ST) ,  { W, SW), (Ω,SΩ)}  is of linear type if the 
structure SΩ  is such that 

ω, ω’ ∈ Ω ⇒  ∃ ω*  ∈ Ω : 
(( t ( T) (*(t) = ((t) ( (’(t) ( W; 
(( Ω & α ∈ R ⇒  ∃ ω*  ∈ Ω : 

(∀ t ∈ T) ω* (t) = α ⊗ ω(t)∈ W. 
Note (and this is very important for our subse-

quent discussion) that each nonsingular subset Ω
# of 

the behaviour Ω ⊂ WT induces (Mesarovic, 1975) a 
subsystem {(T ,  ST) ,  (W, SW), (Ω#,SΩ

#)}   of the D-
system Σ = { (T ,  ST) ,  (W, SW), (Ω,SΩ)}.  In this 
statement, Ω#  is said to be the partial behaviour of 
the D-system Σ, and because the process of structural 
identification models the structure of the D-system, 
with the only purpose of extending the stylistic possi-
bilities, we shall write on frequent occasions (in the 
context of an a posteriori modeling) the phrase "set of 
observations" instead of the phrase "partiual beha-
viour of the D-system”. We must not be discouraged 
by the fact that in this treatment the linearity of the D-
system {(T ,  ST) ,  (W, SW), (Ω,SΩ)}.  guarantees no 
linearity of its arbitrary subsystem {( T ,  ST) ,  (W, 
SW), (Ω#,SΩ

#)}   Ω# ⊂ Ω (for example, when Ω# the 
behavior of an incomplete system (Mesarovic, 1975)), 
because the case in point here is an exogenic repre-
sentation of the subsystem (the endogenic characteri-
zation of the partial behaviour of the D-system will 
be given below, in Definition 4); in this connection, it 
is worth noting one attractive (if not surprising) fact 
that all D-systems are subsystems of a linear (!) D-
system {(T, Sт), (W,SW), (WT,Sw

T) } .   
It is obvious that the construction of different sys-

tems that are immanent to .D-systems opens up limit-
less possibilities for experimentation (see, for exam-
ple, Ch. 1 (Matrosov, 1980)). Yet the problem of 
studying arbitrary systems is too general to be of real 
value, because the higher is the level of abstraction, 
the larger is the amount of information about details 
that is lost. For this reason, it is on details (primarily 
the "division" of the structure of partial behavior, SΩ

# 
that our attention will be focussed in the subsequent 
discussion).  

Let (X, || • ||x) be a real finite-dimensional Banach 
space, and let t0 < t1, T = [ t o, t1] be a segment of a 
numerical straight line R with the Lebesgue measure 
µ. Let LP(T,µ ,Х ) { I  < p <  ∞) designate the Ba-
nach space of equivalency classes (mod µ) of all µ-
measurable mappings ψ :  T  → X which are 
summed in the sense of Bochner and by the norm 

|| ψ ||xµ,p = p

T

p

X
dtt /1))()((∫ µψ , 

through the H-space Lp(T,µ ,Rn) × LP(T,µ ,Rm)  
with the norm 

,),(
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ω1 ∈ Lp(T,µ ,Rn) ,  ω2 ∈ Lp{ T,µ ,Rm) . As usual, 
С(T,X)  is the space of all continuous on T functions 
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with the values in X and the sup-norm. Finally, 
AC(T,X) is a linear manifold of all absolutely conti-
nuous functions from C(T,X) and П = AC{ T,Rn) × 
LP(T,µ ,Rm) . In this case the designation П will be 
used (where necessary) without especially indicating 
that  

a) the product П is a subset in the space H (in this 
position the points from AC(T,Rn) in the construc-
tion of П are put in correspondence with equivalence 
classes from Lp(T,µ,,Rn)), and  

b) the topological structure in П is the narrowing 
of the metric topology from H generated by the norm 
|| • ||H;  

we make also the convention that positions a) and 
b) are also extended to subsets from П.  

For our consideration, we choose a class of linear 
control systems described by a vector-matrix dif-
ferential equation 

)(tx
⋅

= A(t )x (t ) + B(t )u (t ),  t  ∈ T,     (1) 

where x( ⋅ )  ∈ AC{ T,Rn) is a solution of Cara-
theodory type (C-solution), u(⋅ )∈ LP(T,µ ,  Rm) is a 
control vector-function, A(⋅) ∈ Lp(T,µ ,  Λ (Rn,Rn) ),  
B(⋅) ∈ Lp(T,Λµ ,Λ (Rm,Rn) ), where p,p' ∈ (l,∞) are 
conjugate numbers (1/p+l/p' = 1), and Λ (Rm,Rn) is 
the Banach space (with the operator norm) of all li-
near operators operating from Rm into Rn; it is as-
sumed that a nonstrict expression of the form: "pai r 
(x ,u) ∈ П - C- solution of the system (1)" is al-
lowed, if (x,u) pointwise µ-almost everywhere in T 
satisfies equation (1) for a certain (∃) pair of opera-
tors (А, В) ∈ Lp ’ (T,µ ,Λ (Rn,Rn)) × 
Lp ’ (T,(,((Rm,Rn)), and the pair (A, B) itself will be 
referred to as the (A,B)-model of the system (1).  

Following the thesis that "... the starting point of 
the process of creating any models is provided by 
observations and assumptions about the existence of 
an interrelationship between them ..." (Mesarovic, 
1975), we introduce  

Definition 4. The partial behaviour P ⊂ E of a li-
near continuous D-system { (T, ST ) , (RN+ M,  SR

n+m), 
(E, SE )} ,  E ⊂ П possesses:  

- a structure of ordinary linear-differential com-
patibility (or, eqivalently, a structure of OLD- 
compatibility) if either P =∅ , or there exists such a 
linear differential system (1) that P is contained in 
the class of its С-solutions (in this statement, P is said 
to be an OLD-compatible set); 

- a structure of distributed linear-differential com-
patibility (or a structure of DLD-compatibility) of 
class k when either P =∅ , or any к elements of an 
absolutely convex hull of the set P produce an OLD-
compatible set (in this statement, P is said to be an 
DLD-compatible set of class k).   

Remark 1. a) Clearly the existence in P of a struc-
ture of OLD- (DLD)-compatibility assumes implicitly 
that: SR

n+m
 is a structure of the Banach space, b) The 

presence in P of a structure of OLD-compatibility 
guarantees no uniqueness of the (A, B)-model, for 

which the system (1) "realizes" P, whereas the pres-
ence in P of the structure of DLD-compatibility of an 
arbitrary class is insufficient for P to be OLD-
compatible (see example 1 (Daneev, 1999b)). c) The 
condition of absolute convexity is essential because 
the position is possible when any " set" of k elements 
of the convex hull of the set P is OLD-compatible, 
while the P does not possess DLD-compatibility of 
class k.  

The following assertion demonstrates that the 
structure of DLD-compatibility is a structure of finite 
character (Engelking, 1985), which cannot be said in 
relation to the structure of OLD- compatibility. 

Assertion 1. Let N ⊂ П and k be a certain (any) 
natural number. Then the structure of DLD-
compatibility of class k with respect to N is a struc-
ture (property) of finite character.  

Following the statement that "... the realization 
theory for the class of dynamic systems addresses 
itself to the questions of existence of a dynamic re-
presentation for a properly defined time system ..." 
(Mesarovic, 1975), we stipulate that the problem of 
"analysis of types", for the class of linear continuous 
D-systems, is formalized by:  

Definition 5. Let N ⊂ П be such that there exists 
P* (similarly, P#) a nonempty maximal (with a quasi-
ordering with respect to a theoretical- multivariate 
inclusion) subset from N that possesses a structure of 
OLD-compatibility (accordingly, a structure of DLD-
compatibility of class k).  Then the linear space E* 
(similarly, E#) that is spanned on P* (accordingly, 
on P#) is said to be an ordinary stratum over N (a 
distributed stratum of class k over N),  and if N ⊂ E* 
(E#),  it will be said to be homogeneous. 4 

Note (Daneev, 1995) that the pair (A(⋅ ) ,B( ⋅ ))  ∈ 
Lp ’ (T,µ ,Λ (Rn,Rn)) × LP’(T, Λ{ Rm,Rn)) of the sys-
tem (1) that includes in the class of its C-solutions an 
ordinary (homogeneous) stratum over N, is a strong 
(irrefutable) (A,B)-model over N. Therefore, the ex-
istence of a strong (A,B)-model reduces geometrical-
ly to the existence of an ordinary stratum (Daneev, 
1999b). It is also worth noting that, by assertion 1, 
any N ⊂ П (N≠ ∅) in accord with the Teichmuller-
Tukey lemma (Engelking, 1985), either does not con-
tain a (nonempty) set with the structure of DLD- 
compatibility, or over N there exists a distributed stra-
tum (possibly not only one); a realization (in the 
sense of Erugin-Kalman-Mesarovic (Erugin, 1952; 
Kalman, 1969; Mesarovic, 1975)) for a distributed 
stratum can be constructed in terms of the system (1) 
(with a strong irrefutable (A,B)- model) with the 
observer (see Section 5).  

__________ 
4 The OLD(DLD)-structure is invariant to the 

Span operator. In (Daneev, 2000) it showed that in a 
class of passive trajectories (u(·) = 0) the ordinary and 
distributed strata coincide (i.e. the OLD and DLD 
structures are equivalent). 

In (Daneev 2000) it showed that the geometry of 
strata is closely related to the solutions of OLD- 
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DLD-expansions, i.e. the problems that form the 
foundation for the "synthesis of types " in the class of 
linear continuous D-systems.  

Definition 6. Let E1,E2 ⊂ П - be linear manifolds 
possessing structures of OLD-compatibility (DLD-
compatibility of class k).  The algebraic OLD-
expansion (accordingly, the algebraic DLD-
expansion of class k) of the pair (E1,E2) is said to be a 
linear set E1+E2, if this is OLD-compatible (accor-
dingly, DLD-compatible of class k), and E1 ≠ E1+E2, 
≠ E2.  

The OLD(DLD)-structure is invariant to the Span 
operator. In (Daneev, 2000) it showed that in a class 
of passive trajectories (u( ) = 0) the ordinary and dis-
tributed strata coincide (i.e. the OLD and DLD struc-
tures are equivalent). 

The goal of this paper is to discuss the issue of 
"bourbakization" of the structural identification prob-
lem as an analytical unified approach ensuring the 
"unity of style" of the five research areas listed in 
Section 1 (in terms of elucidating the typicalness of 
existence of the solution to this problem for structural 
criteria of OLD-DLD-compatibility-expansion). Fur-
thermore, results derived from carrying out this study 
may serve as an indication of particular practical situ-
ations in which it is possible to expect (at least in 
principle) a solution of the structural identification 
problem in the class of OLD (DLD)-compatible D-
systems. Of course, a "typical decidability" is a purely 
qualitative characteristic. It does not contain informa-
tion about how well calculations of applied character 
are posed. Therefore, it is worth noting once again 
that the significance of results reported in this paper 
must be considered (and appreciated) precisely in the 
light of the above-mentioned possibility which 
emerges at least when the conditions of the above 
typical decidability are satisfied.  

 
3. BASIC THEOREMS OF ANALYSIS AND 

SYNTHESIS OF TYPES 
 

Let L{ T,µ ,R) - be the space of equivalency 
classes of all µ-measurable on T real functions, and 
let 

µ
≤

mod
 - be a quasi-ordering in L(T,µ ,R), such that 

ψ1 
µ

≤
mod

 ψ2   (ψ1,ψ2 ∈ L(T,µ ,R)), when ψ1(t) ≤ ψ2(t) 

is pointwise µ-almost everywhere in T; in this case 
the least upper bound of the subset W from 
L(T,µ ,R) (if such one exists with respect to a partial 
ordering 

µ
≤

mod
) will be designated as supL W. Further, 

we introduce a nonlinear operator Ф : П → 
L(T,µ ,R),defined by the following construction 
(Lakeyev, 1998): 


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where || • ||R
n and || • ||R

n+m - are arbitrary fixed norms, 
respectively, in Rn and Rn+m, and it is not assumed a 
priori  that {( x,u)}  is an OLD- compatible set; by 

(Lakeyev, 1998), {t ∈ T : )(tx
⋅

=  0} ⊃ { t∈ 

T: (x( t ) ,u( t ))  =  0} (modµ) holds, which permits us 
to assert that the operator Ф does not lose (because of 
the second line of the system (2)) a priori information 
at the points of the set {t∈ T:  (x (t ),u (t ) ) = 0} 
about the behaviour of the D-system that "engen-
dered" a dynamic process t  →{ x (t ),u (t ) ):  T 
→Rn+m.  

Let us now demonstrate that the construction of 
(2) is intrinsically based on the well-known (in varia-
tional analysis) Rayleigh-Ritz ratio (Horn, 1986). Let 
(Г, z) → rel (Г,z): Λ{Rn+rn, Rn+m) × Rn+m  → R - be a 
given ratio, where Г and z - are the matrix and the 
vector of corresponding dimensions, respectively. 
Then, if it is assumed that (x(⋅),u(⋅)) is a certain (any) 
C-solution of the system (1) with the (A,B)-model 
(A(⋅),B(⋅)) and the Ф-operator of (2) with the Eucli-
dean norms || • ||R

n  and || • ||R
n+m, then in view of the 

system (1) we have Ф(x ,u )(t )= (rel (Г,(x ,u)))1/2(t), 
Г(⋅) = [A(⋅), B(⋅)]’[A( ⋅), B(⋅)], where (') is the matrix 
transposition operation. Therefore, in the subsequent 
discussion the operator Ф will be referred to (irres-
pective of the form of the norms || • ||R

n and || • ||R
n+m, 

involved in terms of (2) in its construction) as the 
Rayleigh-Ritz operator, the idea of further developing 
the analytical approach to solving the existence prob-
lem of strong (А,В)- models on the basis of diferen-
tiating the measures  
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was suggested for the first time by these authors in 
the Conclusions of the paper (Daneev, 1995), and a 
start was made on its implementation in (Lakeyev, 
1998). 

Definition 7. The Rayleigh-Ritz operator Ф is se-
miadditive on E ⊂ П with the weight α (const) if Ф(ω1 
+ ω2)

µ
≤

mod
 α Ф (ω1) +  α Ф (ω2) holds for any pai r 

(ω1,ω2)  ∈ E × E. 
Lemma 1. Let Ф*  and Ф**  be the Rayleigh-Ritz 

operators which mutually differ by the analytical re-
presentation of the norms || • ||R

n and || • ||R
n+m (from 
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their constructions (2)), and let E be a subset from П, 
on which the operator Ф*  is semiadditive with a cer-
tain weight. Then the operator Ф** is also semiaddi-
tive on E with a certain weight.  

Below, when defining the construction of an ab-
sorbing set, we will follow (Yosida, 1965) without 
imposing any constraints on Card N ⊂ П.  

Theorem 1. Let N ⊂ П be a fixed, nonempty set of 
observations Ф the Rayleigh-Ritz operator, and к an 
arbitrary natural number ≤  dim Span N, and le t  Q 
be a certain (or, equivalently, any) absorbing set in 
Span N. Then: 

- Span N is a homogeneous ordinary stratum over 
N, if and only if there exists φ =  supL Ф[Q] ∈ 
LP’ (T,µ ,R);  

- Span N is a homogeneous distributed stratum of 
class 1, if and only if Ф [Q]  ⊂ LP’ (T,µ ,R);  

- if, provided that b) holds, the operator Ф is 
semiadditive with a certain weight on any k- 
dimensional subspace from Span N, then Span N is a 
homogeneous distributed stratum of class k.  

It can be shown that if at least one of the condi-
tions (necessary and sufficient) of Item a) of Theorem 
1 is satisfied for N ⊂ П, then there exists a denumer-
able set Q* ⊂ Q, such that t → φ(t) =  sup{Ф(ω)(t): ω 
∈ Q*} (here Q, Ф and are the constructions of the 
Theorem (1); on the other hand, Item c) of this Theo-
rem gives a direct 

Corollary 1. Let N ⊂ П and E# be a finite- dimen-
sional distributed stratum of class k over N. Then E# 
is an ordinary stratum over N, if the Rayleigh-Ritz 
operator is semiadditive on E# with a certain weight. 

Theorem 1 (and it would be instructive to com-
pare it with Theorems 1 and 2 (Daneev, 1995) and 
Theorem 1 (Daneev, 1999b)) makes it possible to 
formulate especially compactly (as against Theorem 3 
(Daneev, 2000)) the conditions of OLD- DLD-
expansions. 

Theorem 2. Let E1,E2 ⊂ П be linear manifolds, 
possessing structures of OLD-compatibility (struc-
tures of DLD-compatibility of class k).  Then the li-
near manifold E1+ E 2,  is such that E1 ≠  E1 + E2 
≠ E2 is an algebraic OLD-expansion (algebraic 
DLD-expansion of class k) of the pair (E1,E2), if the 
Rayleigh-Ritz operator is semiadditive on E1  +  E2 
with a certain weight.  

Remark 2. The merit of the OLD-expansion crite-
rion that is formulated by this Theorem lies in the fact 
that it permits to infer the presence of the above-
indicated expansion from "intrinsic" properties of the 
linear manifolds E1 and E2, where as, if we resort to 
the criterion from position a) of Theorem 1, it is ne-
cessary to "guess" the function φ  ∈ LP’ (T,µ ,R), for 
any ω ∈ (E1 + E2 ), Ф(ω)

µ
≤

mod
φ .  

It is obvious that every more-or-less advanced 
theory assumes the existence of a sufficient "number" 
of particular objects of its analysis. Therefore, al-
though we now have Theorem 2 at our disposal, it is 

not unreasonable to point out the "immanent" objects 
of the Rayleigh-Ritz operator.  

Lemma 2. For the Rayleigh-Ritz operator Ф, the 
number α ≥ 0 and the set N ⊂ П, such a property of 
Ф, as semiadditivity with a weight α is the property of 
finite character for a subset from N.  

Assertion 2. Let there be: E, a linear set in П, a 
Rayleigh-Ritz operator Ф, and α ∈ [l,∞). Then there 
exists a maximum (in the case of an ordering with 
respect to a theoretical-multivariate inclusion) non-
zero linear set Ea  in E, on which the operator Ф is 
semiadditive with a weight α. With these assumptions, 
if E is an OLD-compatible set, closed in H, then Ea 
will also be such one.  

Remark 3. It can be shown that in E there exists a 
maximum set, on which Ф is semiadditive with a 
weight α ∈ [0,1), in this case, however, it can no 
longer be a linear set except for a trivial variant Ea = 
{0} ⊂ П. 

Corollary 2. Let E be a linear OLD-compatible 
set, on which the operator Ф is semiadditive with the 
weight α ∈ [1,  ∞) . Then the closure of E in H will 
also possess a similar property. 

 It is clear that Ea1 ⊂ Ea2, as 1 ≤ α1 ≤ α2. On the 
other hand, Ea depends on the initial set E, and of 
special interest is the case when E is an ordinary stra-
tum. It is obvious that in the universe of all ordinary 
strata in H a special role is played by the family of all 
strata over П. Their significance is due to the fact 
that, by Theorem 4 (Daneev, 1994b) and Lemma 1 
(Daneev, 1995), each such stratum, representing the 
behaviour of a linear continuous D-system (with a 
full input (Mesarovic, 1975)), defines in a one-to-one 
manner the differential system (1) that realizes it. 
Thus the family of all ordinary strata over П is iso-
morphic to the space of equivalency classes (modµ) 
of all (A,B)-models of the system (1). The last state-
ment is intimately related to the "number" of linear 
manifolds in each such stratum, on which the Ray-
leigh-Ritz operator is semiadditive (with the weight 
of a "heavy" unity).  

Corollary 3. Let E* be a certain ordinary stratum 
over П, Ф the Rayleigh-Ritz operator, and α ∈ [1, 
∞) . Then there exists a maximum set Ea in E*,  on 
which Ф is semiadditive with a weight a, with Ea be-
ing a linear manifold closed in H.  

The question that remains open is: Does there ex-
ist for any distributed stratum E#, closed in H, when α 
∈ [1,  ∞) , a maximum linear set from this stratum, 
closed in H, on which the Rayleigh-Ritz operator is 
semiaddtiive with a weight α? An affirmative answer 
to this question would mean, in particular, that Corol-
lary 3 is valid for a nonloose stratum over П (a distri-
buted stratum is loose if its closure in H does not pos-
sess a structure of DLD-compatibility). 

 
4. CONCLUSION 

 
"... in §10.13, we will give a new and (hopefully) 

exhausting account of the realization theory of linear 
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systems with a continuous time..." (Kalman, 1969, 
10.0). The elements and possible avenues of inquiry 
into linear theoretical-model analysis that have been 
presented above, show that major work is only getting 
under way! 
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